

KAMIYA BIOMEDICAL COMPANY

Camel Haptoglobin ELISA

For the quantitative determination of haptoglobin in camel serum, plasma and milk

Cat. No. KT-787

For Research Use Only.

PRODUCT INFORMATION

Camel Haptoglobin ELISA Cat. No. KT-787

PRODUCT

The **K-ASSAY®** Camel Haptoglobin ELISA is an enzyme immunoassay for the quantitative determination of haptoglobin in camel serum, plasma and milk. For research use only.

INTRODUCTION

Haptoglobin is an acute phase protein that is elevated in the blood of most mammals during infection and inflammation. In camels, serum haptoglobin levels increase 4-fold during paratuberculosis infection. Haptoglobin is also present in camel milk and may serve as a biomarker for mastitis. This kit can be used to measure haptoglobin in serum, plasma and milk.

PRINCIPLE

The **K-ASSAY** Camel Haptoglobin ELISA is based on a solid phase enzyme-linked immunosorbent assay (ELISA). The assay uses affinity purified anti-camel haptoglobin antibodies for solid phase (microtiter wells) immobilization and horseradish peroxidase (HRP) conjugated anti-camel haptoglobin antibodies for detection. Serum, plasma or milk samples are diluted and incubated alongside calibrators in the microtiter wells for 45 minutes. The microtiter wells are subsequently washed. HRP conjugate is added and incubated for 45 minutes. Haptoglobin molecules, if present, are thereby sandwiched between the immobilization and detection antibodies. The wells are then washed to remove unbound HRP-conjugate. TMB Reagent is added and incubated for 20 minutes at room temperature. This results in the development of a blue color. Color development is stopped by the addition of Stop Solution, changing the color to yellow. Optical density is measured spectrophotometrically at 450 nm. The concentration of haptoglobin is proportional to the optical density of the test sample and is derived from a calibration curve.

COMPONENTS

- Anti-camelid haptoglobin antibody coated microtiter plate with 96 wells (provided as 12 detachable strips of 8)
- Anti-camelid haptoglobin HRP Conjugate, 11 mL
- Reference calibrator (lyophilized)
- 20X Wash Buffer, 50 mL
- 10X Diluent, 25 mL
- TMB Reagent (One-Step), 11 mL
- Stop Solution (1N HCl), 11 mL

MATERIALS REQUIRED BUT NOT PROVIDED

- Precision pipettes and tips
- Distilled or de-ionized water
- Polypropylene or glass tubes
- Vortex mixer
- Absorbent paper or paper towels
- Microplate incubator/shaker with mixing speed of ~150 rpm
- Plate reader with an optical density range of 0-4 at 450 nm
- PC graphing software or graph paper

STORAGE

The unopened kit should be stored at 4°C and the microtiter strips should be kept in a sealed bag with desiccant. Test kits will remain stable until the expiration date provided that the components are stored as described above.

GENERAL INSTRUCTIONS

All reagents should be allowed to reach room temperature (25°C) before use.

WASH SOLUTION PREPARATION

The wash solution is provided as a 20X stock. Prior to use, dilute the contents of the bottle (50 mL) with 950 mL of distilled or de-ionized water.

DILUENT PREPARATION

The diluent is provided as a 10X stock. Prior to use, estimate the final volume of diluent required for your assay and dilute one (1) volume of the 10X stock with nine (9) volumes of distilled or de-ionized water.

CALIBRATOR PREPARATION

- 1. Reconstitute the lyophilized haptoglobin calibrator stock vial as described on the vial label. The reconstituted stock is stable for one day at 4°C but should be aliquoted and frozen at -20°C or lower if future use is intended.
- 2. Label 8 polypropylene or glass tubes: 500, 250, 125, 62.5, 31.25, 15.63, 7.81 and 0 ng/mL.
- 3. Prepare a 500 ng/mL working haptoglobin calibrator as detailed on the calibrator vial label by mixing the indicated volume of diluent and reconstituted stock in the tube labeled 500 ng/mL.
- 4. Dispense 250 μL of diluent into the tubes labeled 250, 125, 62.5, 31.25, 15.63, 7.81 and 0 ng/mL.
- 5. Prepare a 250 ng/mL calibrator by diluting and mixing 250 μ L of the 500 ng/mL calibrator with 250 μ L of diluent in the tube labeled 250 ng/mL. Similarly prepare the 125, 62.5, 31.25, 15.63, 7.81 ng/mL calibrators by serial dilution.

SAMPLE PREPARATION

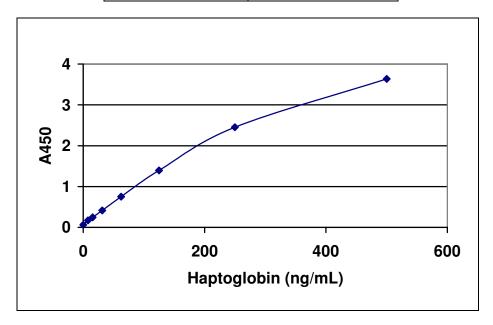
We found haptoglobin levels of approximately 0.65 mg/mL in serum from healthy camels. In order to obtain values within the range of the calibration curve, we suggest that samples be diluted 4,000 fold using the following procedure for each sample to be tested:

- 1. Dispense 195 uL and 495 uL of 1X diluent into separate tubes.
- 2. Pipette and mix 5 μL of the serum/plasma sample into the tube containing 195 μL of 1X diluent. This provides a 40 fold dilution.
- Mix 5 μL of the 40 fold diluted sample with the 495 μL of 1X diluent in the second tube. This provides a 40 fold dilution.

We found haptoglobin levels of 7.0 μ g/mL in normal camel milk. We suggest that milk samples be diluted at least 20-fold with 1X diluent prior to assay.

ASSAY PROCEDURE

- 1. Secure the desired number of coated wells in the holder.
- 2. Dispense 100 μL of calibrators and diluted samples into the wells (we recommend that samples be tested in duplicate)
- 3. Incubate on an orbital microplate shaker at 100-150 rpm at room temperature (25 °C) for 45 minutes.
- 4. Remove the incubation mixture using a plate washer and wash the wells 5 times with 1X wash solution (400 μ L/well).
- 5. Strike the wells sharply onto absorbent paper or paper towels to remove all residual droplets.
- 6. Add 100 µL of HRP conjugate to each well.
- 7. Incubate on an orbital microplate shaker at 100-150 rpm at room temperature (25 °C) for 45 minutes.
- 8. Wash as detailed in 4 and 5 above.
- 9. Dispense 100 µL of TMB Reagent into each well.
- 10. Gently mix on an orbital microplate shaker at 100-150 rpm at room temperature (25 ℃) for 20 minutes.
- 11. Stop the reaction by adding 100 μL of Stop Solution to each well.
- 12. Gently mix. It is important to make sure that all the blue color changes to yellow.
- 13. Read the optical density at 450 nm with a microtiter plate reader within 5 minutes.


CALCULATION OF RESULTS

- 1. Calculate the average absorbance values (A₄₅₀) for each set of reference calibrators and samples.
- 2. Construct a calibration curve by plotting the mean absorbance obtained from each reference calibrator against its concentration in ng/mL on linear graph paper, with absorbance values on the vertical or Y-axis and concentrations on the horizontal or X-axis.
- 3. Using the mean absorbance value for each sample, determine the corresponding concentration of haptoglobin in ng/mL from the calibration curve.
- 4. Multiply the derived concentration by the dilution factor to determine the actual concentration of haptoglobin in the serum/plasma sample.
- 5. PC graphing software, if available, should be used for the above steps.
- 6. If the A₄₅₀ values of samples fall outside the range of the calibration curve, samples should be diluted appropriately and re-tested.

TYPICAL CALIBRATION CURVE

A typical calibration curve with optical density readings at 450 nm on the Y-axis against haptoglobin concentrations on the X-axis is shown below. This curve is for the purpose of illustration only and should not be used to calculate unknowns. Each user should obtain his or her data and calibration curve in each experiment.

Haptoglobin (ng/mL)	A450
500	3.636
250	2.452
125	1.395
62.5	0.752
31.25	0.414
15.63	0.246
7.81	0.171
0	0.063

LIMITATIONS OF THE PROCEDURE

- 1. Reliable and reproducible results will be obtained when the assay procedure is carried out with a complete understanding of and in accordance with the instructions.
- 2. The wash procedure is critical. Insufficient washing will result in poor precision and falsely elevated absorbance readings.

FOR RESEARCH USE ONLY

KAMIYA BIOMEDICAL COMPANY

12786 Gateway Drive, Seattle, WA 98168
Tel: (206) 575-8068 Fax: (206) 575-8094
Email: LifeScience@k-assay.com

www.k-assay.com